Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs

Scott Bennett,¹* Thomas Wernberg,¹ Euan S. Harvey,² Julia Santana-Garcon¹ and Benjamin J. Saunders²

Abstract
Climate-mediated changes to biotic interactions have the potential to fundamentally alter global ecosystems. However, the capacity for novel interactions to drive or maintain transitions in ecosystem states remains unresolved. We examined temperate reefs that recently underwent complete seaweeds canopy loss and tested whether a concurrent increase in tropical herbivores could be maintaining the current canopy-free state. Turf-grazing herbivorous fishes increased in biomass and diversity, and displayed feeding rates comparable to global coral reefs. Canopy-browsing herbivores displayed high (~10 000 g 100 m⁻²) and stable biomass between 2006 and 2013. Tropical browsers had the highest abundance in 2013 and displayed feeding rates approximately three times higher than previously observed on coral reefs. These observations suggest that tropical herbivores are maintaining previously kelp-dominated temperate reefs in an alternate canopy-free state by grazing turfs and preventing kelp reestablishment. This remarkable ecosystem highlights the sensitivity of biotic interactions and ecosystem stability to warming and extreme disturbance events.

Keywords
Climate change, coral reef, fishes, kelp, regime shift, tropicalisation.

INTRODUCTION
Understanding how climate-driven changes in biotic interactions will alter the ability of ecosystems to absorb disturbance while retaining their fundamental structure, function and feedbacks (i.e. ecological resilience) is a current challenge for ecologists (Zarnetske et al. 2012). The erosion of ecological resilience is often associated with a reduction in functional capabilities within the ecosystem. For example, over-harvesting higher trophic levels can lead to a release of constraints on lower trophic levels and subsequent over or under-grazing of vegetation (Pace et al. 1999; Schmitz et al. 2000; Bertness et al. 2014). Resilience can also be modified by the addition of novel species and functional groups into ecosystems (Wardle et al. 2011; Vergés et al. 2014a). Functional alteration of this kind is increasingly common under climate change as tropical species begin to inhabit temperate habitats (Last et al. 2011; Poloczanska et al. 2013; Wernberg et al. 2013), and temperate species establish in polar regions (Kortsch et al. 2012; Krause-Jensen et al. 2012). These changes, in turn create the potential for exacerbated or dampened impacts of climate change on ecosystems.

In marine systems, herbivores have a profound effect on benthic primary producers (Poore et al. 2012) and can be pivotal to the resilience of benthic ecosystems (Bellwood et al. 2004; Ling et al. 2009a; Bertness et al. 2014). Herbivore range expansions into new ecosystems, facilitated by climate warming, can severely alter trophic interactions that have stabilised over long time scales, undermining the stability of that system (Ling et al. 2009b; Vergés et al. 2014a). Temperate ecosystems are particularly vulnerable to range expansions of tropical herbivores with the potential to exploit vegetation (Vergés et al. 2014b). This is due to the high diversity of species and functional groups in tropical regions (Burkepile & Hay 2008; Rasher et al. 2013), many of which are not normally found in temperate areas.

Fishes are dominant herbivores on coral reefs and can be divided into several functional groups, depending on their feeding mode and ecosystem role (Bellwood et al. 2004). Broadly, ‘browsers’ feed primarily on foliose and canopy-forming seaweeds, while ‘grazers’ feed primarily on epilithic algal turfs. Grazers, including ‘scrapers’ and ‘excavators’ (sensu Bellwood & Choat 1990), are fundamental to the maintenance and resilience of coral-dominated reefs (Bellwood et al. 2004; Mumby et al. 2006). Their high feeding rates on algal turfs maintains low algal and sediment biomass, thereby facilitating the settlement, growth and persistence of corals. Browsing herbivores are thought to provide critical resilience to coral reefs by consuming canopy forming seaweeds and facilitating phase shift reversals of degraded reefs back to coral dominant states (Bellwood et al. 2006). In contrast, molluscs and urchins are the primary herbivores in most temperate ecosystems, with fish generally playing a less important role (Poore et al. 2012; but see Taylor & Schiel 2010 and; Pages et al. 2012). Temperate herbivores generally do not have a critical influence on the resilience of healthy temperate reefs, which are production-dominated systems as opposed to the consumer-dominant dependence of healthy coral reefs.

¹School of Plant Biology & UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, 6009 WA, Australia
²Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia

*Correspondence and present address: Scott Bennett, Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia.

E-mail: scott.bennett1@curtin.edu.au

© 2015 John Wiley & Sons Ltd/CNRS
(Fig. 1, Connell et al. 2011). However, an increase in tropical herbivore functional groups in temperate marine ecosystems has the potential to introduce unprecedented top down control and, theoretically at least, undermine the stability of vegetated habitats (Vergès et al. 2014a). This could occur through over-consumption by browsers, driving a shift from canopy to turf dominance and/or benthic grazers maintaining canopy-free states, particularly where physical disturbance temporarily suppresses production by removing the canopy (Fig. 1).

In order for herbivores to maintain and/or drive a transition from seaweed canopies to a canopy-free state, seaweed consumption rates will need to exceed reef-wide production rates. At the reef scale, the flux of both of these processes will depend on the total biomass of herbivores and seaweed canopy (i.e. higher canopy cover or total biomass results in higher total biomass production on the reef, Fig. 1). Low fish biomass will result in diffuse consumption rates per unit area, which in a canopy-dominated state will result in net production across the reef and high canopy resilience (i.e. healthy temperate reef, Fig. 1). In a canopy-free state, low herbivore biomass reduces the resilience of that state by enabling canopy seaweeds to recruit and grow. This relationship is particularly relevant for roving herbivorous fishes, which can have large home ranges spanning several kilometres (Welsh & Bellwood 2014) meaning that feeding effort is widely dispersed across the reef (c.f. sea urchins where low consumer biomass at the reef scale can still lead to patches of barren formation at the meter scale; Flukes et al. 2012).

High herbivore biomass on the other hand will reduce the resilience of the canopy and increase the resilience of canopy-free states. Under consumption-dominated conditions, resource demand (and therefore feeding rates per unit of seaweed) increase with decreasing canopy availability, thereby exacerbating canopy loss, prevent the establishment of canopy species and further increase the resilience of canopy-free conditions (i.e. healthy coral reef). Furthermore, as canopy-free area increases, grazers will become increasingly important to maintain low biomass turf-dominated conditions. While roving grazers, capable of maintaining canopy-free conditions are generally uncommon on temperate reefs, the poleward movement of tropical herbivores into temperate reef systems due to warming could potentially increase grazing rates to a level where this is possible (Vergès et al. 2014a).

In 2011, a marine heatwave off the coast of south-west Australia caused unprecedented impacts on temperate reef ecosystems and resulted in major modification of benthic habitats and tropicalisation of fish communities (Fig. S1, Wernberg et al. 2013; Smale & Wernberg 2013). Canopy cover declined by 40% in some regions with some reefs even more severely affected (Wernberg et al. 2013). Here, we examined reefs that were dominated by extensive canopy cover prior to the 2011 heatwave (Wernberg et al. 2010), but have since become dominated by algal turfs. We ask whether an increase in tropical herbivores could be maintaining the current canopy-free reef state on these temperate reefs. We compared the trophic structure and biomass of the fish community before and after the 2011 marine heatwave and quantified consumption rates by herbivores feeding on the substratum, translocated kelp recruits, solitary kelp adults and adult kelp patches. Finally, we compared the observed browsing and grazing rates from these tropicalised temperate reefs to rates reported from coral reef ecosystems globally, where herbivores are known to play

Figure 1 Heuristic model depicting the resilience of canopy and canopy-free states on reefs. Resilience is determined by the relative rates of canopy production vs. consumption, which scale as a function of seaweed and browsing herbivore biomass, respectively. Ecosystems in the bottom right half of the figure have net production (i.e. algal production outweighs herbivore consumption) and will remain/return in a canopy-dominated state (i.e. healthy temperate reefs). Ecosystems in the top left half of the figure have net consumption, and will move towards a canopy-free state (i.e. healthy coral reefs). The diagonal solid line represents the threshold where production and consumption are equal, and the grey area represents uncertainty around the shape of the relationship. The red dashed line illustrates the possible forward and reverse shift trajectories by modifying herbivore numbers. Small black arrows illustrate the influence of positive feedbacks described in the boxes.
a fundamental role in maintaining canopy-free states (Bellwood et al. 2004). Our findings provide insight into the capacity for tropical herbivores to maintain an alternate canopy-free state on temperate reefs and highlight the sensitivity of biotic interactions and ecosystem stability to warming.

METHODS

Fish and benthic surveys

The study was conducted on the coastal sandstone reefs off Port Gregory, Western Australia (28.2° S, 114.2° E). Changes in fish and benthic community structure since the 2011 marine heatwave were examined using diver operated stereo video (stereo-DOV) surveys conducted at six wave-exposed reefs in June 2006 and repeated in May–June 2013 using standardised methodology (Watson et al. 2005). The stereo-DOV system comprised of two Sony digital cameras mounted 700 mm apart on a base bar, inwardly converged at 8°. An image synchronising diode was mounted in front of the cameras field of view and a chain-man cotton counter was mounted on the side to measure the length of each transect. Twelve 25 × 5 m transects were swum along each reef at a pace of approximately 2 min per transect, with the cameras approximately 50 cm above the reef angled slightly downward enabling the reef surface to be observed throughout the video. At least a 10 m gap was left between replicate transects.

DOV video analyses

To enable accurate fish length measurements, the stereo-camera pair was calibrated before and after each field expedition using the software CAL (SeaGIS Pty Ltd, Victoria, Australia) following Harvey & Shortis (1998). The video footage obtained by the stereo-DOV was analysed using the software ‘EventMeasure (Stereo)’ (SeaGIS Pty Ltd) and ‘Vision Measurement System’ (Robson et al. 2006). All fish observed were identified to the lowest taxonomic level possible, counted and measured to the nearest millimetre (fork length). Due to morphological similarity, limited visibility and distance to the camera, ‘herbivory video analysis’ below). Initial phase (IP) Scarus ghobban and S. schlegelii were also not distinguishable on all transects, and therefore the three species were pooled for the analysis (but see ‘herbivory video analysis’ below). Initial phase (IP) Scarus ghobban and S. schlegelii were also not distinguishable on all transects, and therefore the three species were pooled for the analysis (but see ‘herbivory video analysis’ below).

Herbivory video analyses

Herbivore feeding rates were measured in November 2013 in Port Gregory at two of the surveyed reefs which experienced complete seaweed canopy loss between 2006 and 2013. The two reefs were separated by approximately 2 km and feeding trials were conducted at 7–10 and 5–6 m depth respectively. To test whether the resident herbivore population could prevent canopy recovery on the reef, Ecklonia radiata (a small kelp) adults and recruits were translocated from Marmion (31.82° S, 115.70° E) to Port Gregory. Ecklonia radiata was used as it is the dominant canopy seaweed throughout temperate Australia, and it was the most abundant canopy species in Port Gregory prior to its disappearance in 2011 (Fig. 2a). Translocated kelps were collected whole, with the holdfast intact and transported to the laboratory in cool, damp and dark calico bags, where they were individually weighed, measured and tagged. The kelps were then stored in cool damp and dark conditions throughout their transportation and deployed back into the sea within 24 h of collection.

Kelps were randomly allocated between the two sites and deployed as solitary recruits (n = 20 per site, fresh weight = 4.5 ± 0.4 g, mean ± SE), solitary adults (n = 10 per site, fresh weight = 441.3 ± 23.2 g) or patches of adult kelps (n = 3 patches of eight kelps per site; mean 3399 ± 227 g fresh weight m⁻²). Two exclusion cages were set up at each site to control for non-herbivore-related kelp loss. Cages contained either adult kelps (n = 2) or recruits (n = 4) and were constructed with 600 × 600 × 500 mm stainless steel frames covered in 10 × 10 mm mesh. For kelp patches, eight individuals were attached to a 1 m² section of steel mesh, reflecting mean natural densities along the coast of Western Australia (de Bettignies et al. 2013). Replicate patches were separated by at least 20 m on the reef. Solitary kelp adults and recruits were haphazardly arranged on the reef, separated by at least 5 m from one another. Kelps and controls were deployed for a 24 h period before being recollected, weighed and measured. Three kelp patches retained significant biomass after the initial 24 h and were redeployed along with the controls for an additional 24 h. Some recruits were bleached after 24 h (a sign of transplant stress) and were therefore removed from analyses. All kelps were entirely consumed within 48 h.

Herbivory video analyses

Underwater video cameras (GoPro Hero3, GoPro Inc, San Mateo, California USA) were used to assess the relative feeding rates on the transplanted kelp (browsing) and background feeding rates (grazing) on the algal turfs. At each site, three
replicate 3 h video recordings were taken during daylight hours between 08:00 and 16:00, within each 24 h period of kelp deployment, or until the kelp was completely consumed. Unlike the DOV footage, good visibility and the close proximity (1–2 m) of kelp transplants to the camera enabled the kyphosids and scarids to be distinguished to species level. Background grazing rates on algal turfs were quantified by haphazardly selecting and filming 2 m² turf-dominated patches of reef. Three replicate patches of reef were filmed for 3 h at a time in each site, with each patch separated by at least 10 m. This was repeated daily for 5 days resulting in 15 replicate filming periods at each site.

Feeding rates on kelps and algal turfs were analysed using EventMeasure software (SeaGIS Pty Ltd) by quantifying the bite rates by each fish species over the course of the filming period in each of the respective habitats. Feeding rates on turf were not quantified in videos containing adult kelps, to avoid any potential impact on the feeding behaviour of turf-algal grazers (Hoey & Bellwood 2011). The maximum number of individuals of each species within the field view at the same time (MaxN) was also recorded as a conservative measure of relative abundance (Cappo et al. 2003).

Literature comparison

Feeding rates measured in the current study were compared to published rates observed throughout global coral reef systems. Feeding rates were extracted from published papers, tables and figures using the Data Thief software (Tummers 2006). Browsing rates were standardised by the biomass of the herbivores, the biomass of the seaweed assay available for consumption and the period of exposure. Studies or treatments were only used where the seaweed assay was placed into coral dominated, or canopy-free areas (primarily reef crest or outer reef flat), where consumption rates are highest (Hoey & Bellwood 2010). Feeding rates on the benthos by herbivorous fishes were standardised by the grazing area and time (1 m² h⁻¹). For studies where bite rates per unit area were not reported, values were estimated based on the reported percentage of reef area grazed per unit time using a conservative mean bite size reported in the literature (16 mm², equivalent to a 10–15 cm, TL, Scarus rivulatus; after Bonaldo & Bellwood 2008). Note that feeding rates by scrapers reported in the literature were not standardised by fish biomass. Where the feeding rates of multiple species were individually reported, the feeding rates of all reported species were summed to determine the total mean browsing or grazing pressure.

Data analyses

To assess whether the per cent cover of benthic functional groups and fish trophic group biomass differed between years, one-way ANOVA were performed for each group. Benthic cover data were square-root arcsine transformed to improve the normality and homoscedasticity of the proportional data. To determine whether rates of kelp biomass removal varied between sites (between subject effect) and days (within subject), repeated measures ANOVA were used (following Hoey & Bellwood 2011). Because different number of patches (n = 3 per site) and solitary kelps (n = 10 per site) were deployed, consumption rates for these treatments were analysed separately. The biomass lost by each kelp was standardised by subtracting the mean biomass loss of controls from treatment loss values. Data were checked for normality and homogeneity of variance through visual inspection of scatter plots and the distribution of residuals and no transformation took place.

RESULTS

Changes to fish and benthic functional groups

Port Gregory experienced complete kelp loss between 2006 and 2013 (ANOVA, F₁,₁₀ = 9.929, P = 0.013, Fig. 2a), and a dramatic increase in turf-algal cover from 0% to 58.7 ± 10.1% (mean ± SE, Fig. 2a, F₁,₁₀ = 33.57, P < 0.001). The other dominant canopy species Sargassum spp., showed variable changes in abundance, whereby it completely disappeared from five reefs but remained abundant in one reef resulting in a non-significant overall change from 23.5 ± 12.2% (mean ± SE) to 13.1 ± 13.1% (F₁,₁₀ = 0.334, P = 0.576). The cover of small foliose algae remained unchanged (F₁,₁₀ = 0.019, P = 0.892).

Fish trophic structure was dominated by herbivores, with the combined biomass of browsers and grazers constituting
87.5% of total fish biomass. Large macroalgal browsers contributed the most biomass, approximately $10,040 \pm 4560$ g 100 m$^{-2}$ (mean ± SE) and did not differ significantly between years ($F_{1,10} = 0.014, P = 0.907$, Fig. 2b). Browser biomass was overwhelmingly dominated by three species, *Kyphosus bigibbus*, *K. sydneyanus* and *K. gladius*. Together these species constituted 98.8 and 92.5% of total browser biomass in 2006 and 2013 respectively and did not differ in biomass between years ($F_{1,10} = 0.014, P = 0.907$). Browser biomass was overwhelmingly dominated by three species, *Kyphosus bigibbus*, *K. sydneyanus* and *K. gladius*. Together these species constituted 98.8% and 92.5% of total browser biomass in 2006 and 2013 respectively and did not differ in biomass between years ($F_{1,10} = 0.014, P = 0.907$). It was not possible to distinguish between these three species in the DOV surveys, however, based on feeding videos *K. bigibbus* had the highest relative abundance in 2013 (mean MaxN = 27 ± 8.88 SE), followed by *K. sydneyanus* (mean MaxN = 1.63 ± 0.63) and *K. gladius* (mean MaxN = 0.43 ± 0.22). Turf-algal grazers had the second highest biomass, and were higher in 2013 compared to 2006 (ANOVA, $F_{1,10} = 12.95, P = 0.004$) driven primarily by an increased biomass of *Scarus ghobban* and *S. schlegeli* (Table S1). Carnivores also had higher biomass in 2013 compared to 2006 (ANOVA, $F_{1,10} = 5.92, P = 0.035$), primarily because of the appearance of 13 tropical species, not observed previously, and an increase in benthic invertebrate feeders, like *Choerodon rubescens* (Table S1). The remaining three trophic groups (planktivores, detritivores and omnivores) constituted less than 3% of the observed fish biomass. Within these trophic groups, the pomacentrids *Abedelfadl* bengalensis (ANOVA, $F_{1,10} = 5.276, P = 0.044$) and *Pomacentrus milleri* (ANOVA, $F_{1,10} = 6.365, P = 0.03$) both displayed significant increases in abundance and biomass (Table S1).

Herbivory rates on kelp

The total biomass of *Ecklonia* (15.1 ± 0.5 kg per site, mean ± SE) was consumed within 48 h of deployment (Fig. 3a). Patches of adult kelps were heavily grazed at both sites, with ‘Site 1’ and ‘Site 2’ completely consumed after 24 and 48 h, respectively (Fig. 3a, Table S2). Similarly solitary kelps at both sites were heavily grazed with only 6.7 ± 0.8 and 20.3 ± 5% of initial biomass remaining after 24 h (Fig. 3a, Table S3). Kelp recruits were heavily grazed, but not to the same extent as adult kelps. The proportion of biomass remaining of recruits transplanted within adult patches was 41.0 ± 17.7% and for solitary recruits 27.4 ± 4.5% after 24 h of exposure (Fig. 3b).

Feeding rates on the kelp were driven primarily by large schools of the tropical herbivore *Kyphosus bigibbus*, and to a lesser extent by the two large species of temperate herbivores *K. sydneyanus* and *K. gladius* (Fig. 4). In total 38,078 bites were recorded on kelp, from five species. *K. bigibbus* averaged 3103 ± 1925 bites h$^{-1}$ and 77.9% of all bites taken, compared to 484 ± 268 bites h$^{-1}$ (15.1% of total bites) by *K. sydney-
anus and 173 ± 101 bites h⁻¹ (5.7% of total bites) by K. gladius (Fig. 3c). The remaining two species, Siganus fuscescens and Scarus ghobban accounted for less than 1.5% of total bites. When standardised by relative abundance (mean MaxN), K. sydneyanus (296 ± 164.4 bites individual⁻¹ h⁻¹) and K. gladius (173 ± 101 bites individual⁻¹ h⁻¹) displayed higher per-capita feeding rates than K. bigibbus (115 ± 71 bites individual⁻¹ h⁻¹). The high total feeding rates by K. bigibbus were therefore driven by intense, sporadic feeding frenzies by large schools (MaxN = 156, Table S4), which consumed approximately 14.3 kg of Ecklonia within 10 min throughout one site, accounting for the site variation in consumption rates after 24 h.

Grazing rates on substratum

A total of 26,161 bites were recorded on the substratum, among 10 fish species. Siganus fuscescens recorded the highest grazing rates, accounting for 66.8% of total bites, followed by Scarus ghobban and Kyphosus bigibbus which accounted for 20.3 and 5.2% of the total bites, respectively (Fig. 3d). Grazing by both S. fuscescens and K. bigibbus was driven by the sporadic appearance of large schools (MaxN = 112 and 156 respectively, Fig. 4). In contrast, feeding rates by S. ghobban were driven by a more constant presence of solitary individuals or small schools (MaxN = 5).

Comparison with global coral reef systems

Macroalgae browsing and substratum grazing rates recorded on the temperate reefs of Port Gregory were comparable to rates reported throughout the world's coral reefs (Table 1, Table 2). Browsing rates in Port Gregory were higher than any previously reported browsing rates on coral reefs using comparable methodology when standardised by filming time, assay biomass and herbivore biomass. Mean grazing rates on the substratum in Port Gregory (172 bites m⁻² h⁻¹ ± 50 SE) were ranked fourth out of seven comparable studies from coral reefs globally (Table 2). The highest reported grazing rates (1684 bites m⁻² h⁻¹) were from Lizard Island on the Great Barrier Reef (Bellwood & Fulton 2008), followed by the Abrolhos Archipelago in Brazil (315 bites m⁻² h⁻¹; Longo & Floeter 2012) and Fiji (258 bites m⁻² h⁻¹; Rasher et al. 2013).

DISCUSSION

Herbivore resilience of canopy-free state

Herbivores appear to be providing high resilience to the new canopy-free state on temperate reefs in Port Gregory through high turf-algal grazing rates and very high kelp consumption rates, thereby preventing the reestablishment of seaweed canopies. The biomass and diversity of grazers, particularly parrotfish, increased significantly between 2006 and 2013, resulting in benthic grazing rates comparable to coral reef ecosystems globally. Grazing herbivores play a critical role on coral reefs, by cropping turfs and consuming canopy recruits, preventing the establishment of canopy-forming species like Sargassum while in turn facilitating coral recruitment and growth (Bellwood et al. 2004; Mumby et al. 2006). Unlike coral reefs, high turf-algal grazing rates on temperate reefs are quite remarkable given that, with the exception of territorial scalyfins

Figure 4 Identity of dominant tropical (a–c) and temperate (d) herbivore species in Port Gregory above reef which was previously covered by kelp canopies. (a) Scarus ghobban primarily caused the increase in grazer biomass from 2006 to 2013 and was the second most prolific grazer. (b) Siganus fuscescens recorded the highest number of bites on the substratum, driven by large roving schools. (c) Kyphosus bigibbus was the most prolific kelp browser and formed large roving schools. (d) Kyphosus gladius (above) and Kyphosus sydneyanus (below) feeding on transplanted Ecklonia radiata patches.
Table 1 Comparison of mean feeding rates by herbivorous fishes in the current study, with rates reported on global coral reefs

<table>
<thead>
<tr>
<th>Feeding type</th>
<th>Algal species</th>
<th>Mean bite rate (bites kgH⁻¹ kGA⁻¹ h⁻¹)</th>
<th>Dominant herbivores</th>
<th>Reef</th>
<th>Region</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroalgal browsing</td>
<td>Ecklonia radiata</td>
<td>3836.06</td>
<td>Kyphosus biggibbus, Kyphosus sydneyanus, Kyphosus gladius</td>
<td>Port Gregory</td>
<td>Temperate, Western Australia</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>1250.68</td>
<td>Naso unicornis</td>
<td>Lizard Island</td>
<td>Great Barrier Reef, Australia</td>
<td>Hoey & Bellwood (2009)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>210.37</td>
<td>Siganus canaliculatus, Siganus doliatus</td>
<td>Orpheus Island</td>
<td></td>
<td>Fox & Bellwood (2008a)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>322.45</td>
<td>Kyphosus vagiensis</td>
<td>Orpheus Island</td>
<td></td>
<td>Hoey & Bellwood (2011)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>880.30</td>
<td>Naso unicornis, Siganus canaliculatus, Siganus doliatus</td>
<td>Low Isles</td>
<td></td>
<td>Bennett & Bellwood (2011)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>595.13</td>
<td>Kyphosus vagiensis, Naso unicornis, Siganus canaliculatus, Siganus doliatus</td>
<td>Whitsunday Islands</td>
<td></td>
<td>Bennett & Bellwood (2011)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>29.56</td>
<td>Kyphosus vagiensis, Naso unicornis, Siganus canaliculatus, Siganus doliatus</td>
<td>Keppel Islands</td>
<td></td>
<td>Bennett & Bellwood (2011)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>135.54</td>
<td>Kyphosus vagiensis</td>
<td>Bundegi</td>
<td>Ningaloo Reef, Australia</td>
<td>Michael et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>54.21</td>
<td>Scarus spp</td>
<td>Mandu</td>
<td>Point Cloates</td>
<td>Michael et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>198.79</td>
<td>Naso unicornis</td>
<td>Maud</td>
<td></td>
<td>Michael et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>162.65</td>
<td>Kyphosus biggibbus</td>
<td>Gnarloo</td>
<td></td>
<td>Michael et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>162.65</td>
<td>Kyphosus vagiensis</td>
<td></td>
<td></td>
<td>Chong-Seng et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Sargassum spp</td>
<td>688.08*</td>
<td>Siganus puelloides</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Macroalgal browsing rates were standardised by the biomass of the herbivores, the biomass of the seaweed assay available for consumption and by the period of exposure. Coral reef feeding rates were only used where the seaweed assay was placed onto coral-dominated areas (primarily reef crest or outer reef flat), where grazing rates are highest. All reported grazing rates employ standardised video methods. * denotes that bites are not standardised by herbivore biomass.

(Parma spp, Saunders et al. 2014), fish grazers are normally an uncommon functional group in these systems. Moreover, unlike healthy coral reef systems where high coral cover concentrates turf-algal grazing onto a relatively small proportion of reef area, Port Gregory reefs displayed between 60 and 80% turf-algal cover, meaning that grazing effort was dispersed over a large area.

Browsers are also likely to increase the resilience of the canopy-free state in Port Gregory by readily consuming kelp recruits and preventing the establishment of canopy species. Kelp transplants were consumed within 24–48 h and observed browsing rates were at least three times higher than has previously been observed on coral reef systems, illustrating the heavily consumption-dominated state of the system. Furthermore, maintenance of the canopy-free state by herbivores is likely to be self-reinforcing as both browsing and grazing herbivores preferentially occupy and feed in reef areas with low algal biomass (Hoey & Bellwood 2011). The vast increase in turf-dominated habitat therefore provides a feedback mechanism that is likely to promote further herbivore recruitment and population growth in this system.

Contributing factors influencing reef resilience

Herbivores may have the capacity to maintain a turf-dominated state in Port Gregory, but they are not the only obstacle to kelp recovery in the region. Temperate reefs along the mid-west coast of Australia represent the warm rear-edge of kelp distribution (Wernberg et al. 2010). The oceanography of the region is characterised by the pole-ward flowing Leeuwin Current, which brings warm tropical water along the south western coastline of the continent thereby maintaining oligotrophic conditions and relatively stable warm water temperatures year round (Waite et al. 2007). The directional flow of the Leeuwin current supplies tropical larvae and propagules to temperate regions, and warming background conditions means that conditions are becoming increasingly favourable for tropical species and unfavourable for temperate species (Wernberg et al. 2013). At the same time, kelp connectivity is linked to the flow of the Leeuwin current (Coleman et al. 2011), making kelp recovery a slow prospect and dependent on supply of propagules from cooler higher latitudes, which may be poorly adapted to warmer conditions.

Influence of browsers on seaweed canopy resilience

While the drivers of canopy loss cannot be unequivocally determined from this experiment, the timing of canopy loss was consistent with observed impacts of the 2011 marine heatwave on seaweed canopies elsewhere in the region (Smale & Wernberg 2013; Wernberg et al. 2013). Kelp canopies displayed high cover (60–80% of reef surfaces) and interannual
stability throughout the region in the 10 years prior to the 2011 heatwave, before completely disappearing by 2013 (observations in 2001, Wernberg et al. 2003; 2006–2008, Wernberg et al. 2010; and December 2010, < 1 month prior to the heatwave, TW personal observation). At the same time, browser biomass did not change between 2006 and 2013. These observations suggest that high browser biomass alone was unlikely to have caused the observed canopy loss, as canopies appear to have been supporting these large browser communities in a stable production-dominated state for at least the 5 years before and after the 2006 observations. Rather, the timing of canopy loss suggests that high thermal anomalies during the marine heatwave may have resulted in temperature stress that directly and indirectly impacted kelps (Fig. S1, Pearce & Feng 2013; Wernberg et al. 2013), driving the transition to a consumption-dominated state. High browser biomass would have nevertheless lowered the resilience of the canopy-dominated state and may have exacerbated the rate of kelp loss during the heat wave through (1) indirect effects, such as physiological stress within kelps leading to an increase in palatability and higher feeding rates by browsing herbivores, (2) increased metabolic rates among herbivores, leading to a spike in herbivore bite rates or (3) a combination these and other factors.

This disturbance-driven model of transition is consistent with Graham et al. (2013), who proposed that extreme disturbance events in conjunction with the necessary protection and management of herbivore populations could lead to phase shift reversals on degraded coral reefs. Currently, the ability of fishes to drive transitions from canopy to turf dominance at a landscape scale remains an open question (Hoey & Bellwood 2011; Chong-Seng et al. 2014; Vergès et al. 2014a). Our observations suggest that large-scale disturbance events may be critical for transitions towards canopy-free states, particularly in the context of other temperate or coral reef systems where browser communities are often much smaller than those observed here, even in unfolked, functionally healthy systems (e.g. outer Great Barrier Reef, Hoey & Bellwood 2010). While further research is necessary to identify the ratio between herbivore and canopy biomass around the critical threshold where reefs transition between production and consumption dominance, our observations raise important questions about the capacity of browsers to drive canopy-turf transitions in the absence of additional forces suppressing net canopy production.

SUMMARY

Our findings demonstrate that high browsing and grazing rates by primarily tropical herbivores are providing resilience to novel turf-dominated conditions on temperate reefs formerly dominated by seaweed canopies. These findings highlight a potential vulnerability of many temperate reef systems worldwide, particularly in the face of increasing frequency and intensity of extreme events (Cai et al. 2015) and predicted climate-driven range expansions of tropical species onto temperate reefs globally (Vergès et al. 2014a). More broadly, the fundamental transformation of the structure and processes driving temperate reef function observed here highlights the potential sensitivity of biotic interactions and ecosystem stability to climate warming and extreme disturbance events.

ACKNOWLEDGEMENTS

We thank Katherine Cure, Emily Gates, Thibaut de Bettignies, Chenae Tuckett, Dave Gull and Phil Van Dyk for field assistance. We also thank Aldo Turco, Jordan Goetze, Todd Bond, Ben Ford and Tim Langlois for help with fish identifications and biomass conversions. Research was funded by grants from the Hermon Slade Foundation (TW, SB) and the Australian Research Council (TW).
AUTHORSHIP
S.B and T.W conceived the idea and decided upon the sampling design. S.B collected herbivory data and S.B and J.S.G analysed video feeding footage. B.S, E.H, J.S.G and S.B collected and analysed the DOV fish community data. S.B, J.S.G and T.W analysed the data. S.B wrote the manuscript with contributions from all authors.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via the online version of this article at Wiley Online Library (www.ecologyletters.com).

Editor, David Bellwood

Manuscript received 5 November 2014
First decision made 17 December 2014
Second decision made 3 March 2015
Third decision made 1 April 2015
Manuscript accepted 13 April 2015