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INTRODUCTION

Estuaries are focal points for human activities and
extraction of resources, and are therefore among the
most seriously impacted and threatened coastal eco -
systems in the world (Lotze et al. 2006). Seagrass
beds provide a number of ecosystem services that are
critical to the ecological function of estuaries, includ-
ing habitat for invertebrates, fish and birds, and sta-
bilisation of sediments. On a global scale, >65% of

the world’s seagrass beds have been lost (Lotze et al.
2006), and seagrasses continue to be under pressure
from multiple concurrent stressors, of which indirect
effects associated with eutrophication (in particular,
competition with drift algae, epiphytes or phyto-
plankton), global warming and invasive species are
considered among the worst (Orth et al. 2006).

Eutrophication reduces the competitive advantage
that seagrasses have over algae at low nutrient con-
centrations in the water column (seagrasses can take
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up nutrients from sediment pore water through their
roots) and is therefore a serious threat to coastal envi-
ronments and seagrasses worldwide (Nielsen et al.
2002). Algae, and drift algae such as the cosmopoli-
tan Chaetomorpha linum (Müller) Kützing in particu-
lar, benefit from higher nutrient loads because they
typically have finely structured thalli with a high
capacity for nutrient uptake and growth (Hauxwell et
al. 2003). Drift algae often form dense mats that can
become entangled and retained among the sea-
grasses, especially in areas of low hydrodynamic
activity (Irlandi et al. 2004). These algal mats can
block out light from the seagrasses and cause
hypoxia through respiratory processes, particularly
at night. Moreover, drift algae have a boom-and-bust
life cycle, supplying rapidly decomposing organic
material to the sediment (Pedersen et al. 2005), which
increases the oxygen consumption in the sediment.

Rapid climate change is a relatively recent threat to
seagrasses. Elevated levels of atmospheric CO2 are
causing a range of changes to the environment that
are likely to impact seagrasses, including ocean acid-
ification, rising sea levels and increasing tempera-
ture (Short & Neckles 1999, Lotze et al. 2006, Orth et
al. 2006, Williams 2007). Global warming is probably
the most acute of the climate-change-related threats.
For example, over the past 5 decades, the tempera-
ture in the southeast Indian Ocean adjacent to West-
ern Australia has been rising at a rate of up to 0.02°C
yr−1 (Pearce & Feng 2007), and the projection for the
region is an additional 1 to 2°C increase in mean tem-
perature over the next 25 yr (Poloczanska et al. 2007).
Elevated temperature directly influences metabolic
processes in plants, increasing the rates of photosyn-
thesis and respiration and affecting the ratio between
them (Stæhr & Wernberg 2009). Temperate sea-
grasses typically have their photosynthetic optimum
at temperatures below the seasonal maximum (Biebl
& McRoy 1971) and may therefore be sensitive to ele-
vated temperatures. The effects may be severe
enough to cause oxygen depletion in seagrass tissue
(Greve et al. 2003).

Elevated temperature and eutrophication interact
synergistically to increase bacterial metabolism in
the sediment, usually by a factor of 2 to 3 for each
10°C increment (Thamdrup et al. 1998), thereby
stimulating oxygen consumption in the sediments
and accumulation of sulphide in the sediment pore
water. Sulphide can bind to the iron in metallo -
enzymes and is therefore a potent phytotoxin that
inhibits important enzymes like cytochrome oxidase
(Raven & Scrimgeour 1997, Armstrong & Armstrong
2005). Negative effects of pore water sulphide and

high oxygen demand leading to plant anoxia have
been documented for several seagrass species
(Holmer & Bondgaard 2001, Greve et al. 2003, Koch
et al. 2007, Kilminster et al. 2008). Plants alleviate
anoxia by transporting oxygen to the belowground
parts, where it is released to the surroundings, creat-
ing an oxygenated rhizosphere that prevents the
intrusion of reduced compounds (Frederiksen & Glud
2006). This oxygen is produced by photosynthesis
during the day and taken up from the surrounding
water column at night, as the oxygen in the lacunae
only lasts for minutes when photosynthesis stops at
night (e.g. Sand-Jensen et al. 2005). If the oxygen
concentration in the water column drops below a
 certain percentage of air saturation (e.g. 35% for
Zostera marina), then oxygen is depleted in the
plants and pore water sulphide can intrude into the
seagrass (Pedersen et al. 2004).

In addition to global warming and competition with
drift-algal accumulations, invasions by introduced
species present yet another possible stressor of sea-
grass beds. Increasing ocean traffic and reduced
transit times of vessels between harbours have
caused a massive increase in the exchange of marine
species among distant areas of the globe (Williams &
Smith 2007, Thomsen et al. 2011). Introduced species
can have a range of effects in their recipient systems,
including predating on or competing with native spe-
cies (Thomsen et al. 2009) or changing nutrient
cycles (Pedersen et al. 2005). Effects of introduced
species tend to be particularly large in estuaries
because these are typical end-points for dispersal
vectors and because estuaries are often stressed sys-
tems (either naturally or from human activities)
where new opportunistic species can readily estab-
lish themselves.

The city of Perth (population approximately 1 mil-
lion) is the only metropolitan area in Western Aus-
tralia, and it is located on the banks of the Swan -
Canning Estuary (hereinafter referred to as Swan
River), which has had a history of intense human
activity since the early colonisation of Australia
(Brearley 2005). The dominant benthic primary pro-
ducer in the Swan River is the seagrass Halophila
ovalis (Hillman et al. 1995). H. ovalis stands cover
approximately 25% of the total estuarine basin, with
most of the population in protected waters <2 m
deep, where drift algae also tend to accumulate
(Astill & Lavery 2001). The invasive mud snail Batil-
laria australis has established itself in the Swan River
within the past 50 yr, and it is now highly abundant
within the H. ovalis beds (>400 m−2; Thomsen et al.
2010). B. australis does not graze on the seagrass, but
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feeds primarily on benthic diatoms and detritus.
However, the abundance and burying behaviour of
B. australis causes significant bioturbation. This may
affect seagrasses directly through uprooting or indi-
rectly by modifying the concentration of organic mat-
ter and reduced compounds in the sediments (i.e. by
burial of drift algae in the sediments or by increasing
advection). These potential effects could hamper the
formation of new seagrass meadows after a die-back
event, such as the one that occurred in winter 1981,
which was caused by unusually high river discharge
(Hillman et al. 1995). As B. australis does not build
ventilated structures, like for example certain poly-
chaetes (Pischedda et al. 2008), its effect on oxygen
uptake of the sediment may be comparatively low.
The aim of the present study was to examine the
impact of drift algae on seagrasses, and to assess the
role of an invasive species in mediating these effects
now and in a warmer future. To address this aim, we
quantified the abundance of drift algae and invasive
snails in the Swan River, and we experimentally
tested the hypothesis that at least 2 factors would
interact synergistically to exacerbate negative effects
of drift Chaetomorpha linum on sediment biogeo-
chemical properties and growth and survival of H.
ovalis.

MATERIALS AND METHODS

Spatio-temporal variability of drift algae, 
invasive snails and temperature in Swan River

The abundances of drift algae and invasive snails
were quantified in 3 seagrass beds at 0.5 to 2 m depth
in the Swan River (Freshwater Bay, Point Walter and
Waylen Bay; Fig. 1). Drift algae were quantified on
5 occasions from May 2008 to February 2009, by
 collecting all algae within 10 haphazardly tossed
0.25 m² quadrats. The algae were returned to the lab-
oratory and weighed fresh after blotting with paper
towels, consistently using the same materials to
reach the same degree of dryness. Snails were
counted within 4 random circular frames (0.33 m
diameter) in May 2006, November 2007 (no data
from Point Walter) and December 2008. To test
whether the abundance of both stressors was con-
stant or variable in space and time, algal and snail
data were analysed by 2-way ANOVA (PRIMER v. 6;
Clarke & Gorley 2006), where sites and sampling
times were considered random factors.

Temperature was measured at 3 sites (Point Roe,
Point Resolution and South Como; Fig. 1) from 17

May 2008 to 10 February 2009. Temperature was
recorded ~10 cm above the bottom at 1 m depth
every 30 min with Hobo data loggers. Data from
Point Roe between May and July were missing due to
the loss of a data logger. Temperatures were tested
for differences between sites by paired t-tests be tween
daily mean temperatures (GMAV 5; Sage 2002).

Laboratory experiment

Setup

The individual and combined effects on seagrass
performance of temperature (21 and 27°C), drift algae
(0 and ~1.4 kg fresh wt Chaetomorpha linum m−2) and
an invasive species (0 and ~120 Batillaria australis
ind. m−2) were tested in a 3-factorial  aquarium experi-
ment with 3 replicates of all orthogonal treatment
combinations. The experimental treatment levels
were all in the low range of extreme values recorded
in situ to provide conservative tests of possible field
effects (see Fig. 2). The aquaria were filled with ~5 cm
quartz sand (average grain size: 458 μm) and ~25 l
seawater. About one-third of the water was ex-
changed each week, and air stones aerated the water
column and provided gentle water circulation. Stan-
dard aquarium heaters were used to achieve the
higher temperature (27.4 ± 0.2°C, n = 7 aquaria; daily
means from loggers recording every 20 min), whereas
the lower temperature (21.4 ± 0.1°C, n = 6 aquaria)
was ambient temperature in the aquarium room.
Light was provided by 2 daylight fluorescent tubes
and 2 UV-tubes in a 12 h light:12 h dark cycle.

Fig. 1. Swan River, Western Australia, showing the 3 sites
where drift algae and snails were sampled (FB: Freshwater
Bay; PW: Point Walter; WB: Waylen Bay), where tempera-
ture was measured (PRo: Point Roe; PR: Point Resolution;
SC: South Como) and where seagrasses were collected for 

the experiment (PR). CBD: central business district
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Halophila ovalis shoots were collected from Point
Resolution (Fig. 1), and Chaetomorpha linum was
collected from several sites around the Swan River.
The seagrasses were trimmed to a rhizome apical
meri stem plus 2 internodes with a leaf-pair each (this
standardised planting unit is hereafter referred to as
a ‘shoot’) and planted in 2 rows of 4 into each aquar-
ium (~239 leaf pairs m−2 and ~119 rhizome growth
apices m−2). This density is relatively low, but never-
theless often occurs in winter and spring months
(<300 growth apices m−2; Hillman et al. 1995) and at
the margins of Halophila beds (authors’ pers. obs.).
The younger leaf pair was clipped (i.e. had a corner
cut out of one leaf) to mark the beginning of new
shoot production. Each planting unit was photo -
graphed on a sheet of white paper, and the length of
both leaf pairs, internodes, the apical meristem (mea-
sured from the tip to the first node) and the first root
was measured. Terminology and definitions of sea-
grass characteristics and measurements follow Duarte
et al. (1994). Occasionally the bulldozing snails up -
rooted seagrass shoots and these were subsequently
found drifting. At the margin of real seagrass beds,
such uprooted growth apices are typically attached
to a longer rhizome and may therefore re-attach to
the sediment. We therefore decided to replant up -
rooted units in our aquaria.

Seagrasses were acclimatised for 2 to 3 d. The
aquaria for the high temperature treatment were
warmed up over this time and drift algae were
added to half of all aquaria thereafter. The algae
were first examined in terms of sight, smell and tex-
ture and were discarded if of questionable quality.
The rest was cleaned of other algal species and ani-
mals, and weighed after blotting with paper tissue.
Drift algae were replaced twice to avoid decomposi-
tion of the mat and ensure constant biomass levels
between aquaria with drift algae, and the average
drift-algal biomass over the duration of the experi-
ment was 1.5 ± 2 kg fresh wt m−2 (n = 12). Eight
snails were added to half of the aquaria at the same
time as the algae. Snails, drift algae and seagrass
appeared to acclimatise quickly to the 2 tempera-
ture levels, as seagrass grew without other stressors,
drift algae generally remained healthy and intact,
and snails moved around and created burial trails.
The experiment ran for 28 d, a common stress -
duration for drift-algal studies. This duration is in
accord with the typical persistence of algal patches
in seagrass beds (Thomsen 2010) and was well
above previously reported plastochrone intervals
(2.2 d for shoots and leaves, 3.3 d for rhizomes;
Short & Duarte 2001).

Growth measurements

Upon harvest, the number of surviving shoots was
counted and the mortality rate calculated as percent-
age loss of growth apices per day:

(1)

where nD and n0 were the numbers of dead growth
apices and growth apices at the beginning of the
experiment respectively and t was the duration of the
experiment (days). A growth apex and the whole
shoot with it was classified as dead if the apical
meristem showed signs of decay and disintegration.

The number of new nodes produced during the
experiment was counted, and the leaf loss rate calcu-
lated as percentage of leaves lost per day (relative to
the sum of leaves at the beginning and leaves pro-
duced). Pre-planting measurements were repeated
and plastochrone interval of leaves (time in days to
grow a new leaf) and net change in leaf length were
calculated using the formulas:

(2)

(3)

where PL was the plastochrone interval (days), nL was
the number of leaves produced during the experi-
ment, t was the duration of the experiment (days),
and Σlstart and Σlend were the accumulated lengths of
all leaves on the shoot (mm). Net change in leaf
length was expressed in mm per day. The length of
the 2nd internode was measured as the distance from
1st to 2nd node, as seen from the direction of the
apex, as we considered it less exposed than the 1st
internode. Biomass was measured separately for
leaves, rhizomes and roots, and reported as the mean
dry weight per surviving shoot per aquarium.

Effects on each univariate variable were tested by
3-way fixed-factor ANOVA using GMAV 5 (Sage
2002), with temperature, snails and algae as fixed
factors. Prior to analysis, each variable was checked
for homogeneity of variances by Cochran’s C-test
and transformed if variances were heteroscedastic.
Transformation solved all problems of heterogeneous
variances. Post hoc analyses of significant interac-
tions were done by Student-Newman-Keuls (SNK)
tests (α = 0.05). Taking all response variables into
account, and following the same experimental
design, multivariate analysis of variance by permuta-
tion (PERMANOVA; PRIMER v. 6; Clarke & Gorley
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2006) was used to test for experimental effects on
overall seagrass performance. These multivariate
analyses were based on Euclidian distances calcu-
lated from normalised data.

Sediment and oxygen analyses

The depth to the sulphide horizon in the sediment
was measured 3 times during the experiment. At
each time, one silver stick (1.2 mm thick thread of
99% Ag) was haphazardly placed in each aquarium
and incubated for 6 h (Holmer et al. 2005). The depth
to the sulphide horizon was measured with a ruler as
the distance from the sediment surface to the black
coating of Ag2S. The data was analysed with a 4-way
ANOVA where time was considered a random factor
and the 3 experimental treatments fixed factors.

The organic content of the sediment was measured
by loss on ignition at 560°C for 6 h. Chlorophyll a
(chl a) content was extracted from the top centimetre
of the sediment, using 3.5 ml ethanol, and quantified
photometrically at 665 nm. The results were analysed
by 3-way fixed-factor ANOVA.

Measurement of oxygen content in the water col-
umn was done every week before exchanging the
water. Measurements were done with a handheld
dissolved oxygen (DO) meter (Oxyguard) and within
the last 2 h of each period of the diurnal cycle (i.e.
day and night). The oxygen content was measured in
the upper water column ca. 20 cm above sediment
surface (= ca. 5 cm above the drift-algal mat), ca.
10 cm above the sediment surface in the centre of the
drift-algal mat (= mid-water) and <1 cm from the sed-
iment surface (= bottom, below the drift mat). The
weekly measurements at the sediment surface were
averaged for each aquarium, and treatment effects
on oxygen levels analysed with a 5-way fixed-factor
ANOVA. Pearson’s product moment correlation
tested the relationship between mean oxygen con-
centration at the bottom at night, where the lowest
oxygen levels were recorded, and seagrass mortality
rate.

RESULTS

In situ patterns of drift algae, invasive snails 
and temperature

Four taxa accounted for >90% of the drift-algal
biomass: across sites and times, the green alga
Chaetomorpha linum (~40%) was dominant, fol-

lowed by the red algae Gracilaria comosa (~25%),
Hypnea sp. (~15%), and Laurencia sp. (~10%). The
abundance of drift algae was highly variable from
site to site and between sampling times (Fig. 2A;
psite × time < 0.0001; Table S1 in the supplement at
www.int-res.com/articles/suppl/m450p067_ supp.
pdf). Winter (July) and early spring (September)
were times of low drift-algal abundance at all sites,
the maximum amount collected in any quadrat being
316.8 g fresh wt m−2. High drift-algal abundances
were found in summer (December, February) and
autumn (May) but peak abundances were found at
different times at different sites. Average peak abun-
dance ranged from ~400 to 800 g fresh wt m−2. All
sites also experienced times of very low drift-algal
abundance (<74.8 g fresh wt m−2) even when abun-
dance peaked at other sites. Drift abundance also
varied greatly from quadrat to quadrat as indicated
by the highly heteroscedastic variances even after
transformation—all sites and times had quadrats
with and  without drift algae, and extreme values
were often 2 to 3 orders of magnitude greater than
the means, reaching up to 2526 g fresh wt m−2.

In contrast to drift algae, the abundance of Batil-
laria australis did not vary significantly between sites
or sampling times (p > 0.06). Indeed, snails were
abun dant in all samples, ranging from 47 to 1181
snails m−2, with an overall mean among sites of 489 ±
70 snails m−2 (n = 8) (Fig. 2B).

Water temperature showed a clear seasonal devel-
opment (Fig. 2C) with a late winter minimum in July-
August (lowest value recorded: 12.3°C) and a sum-
mer maximum around January (highest value
recorded: 31.2°C) after which temperatures started to
decline again. Water temperatures were >25°C for
most of December and January at all 3 sites, but on
average, temperatures were higher further into the
estuary (South Como > Point Resolution > Point Roe;
t > 2.12, p < 0.035).

Laboratory experiment

Seagrass mortality and performance

The aquarium experiment showed that tempera-
ture and drift algae both increased the mortality of
apical meristems and leaf loss of Halophila ovalis
shoots (Fig. 3; Table S2 in the supplement). However,
whereas effects of drift algae (p = 0.001) and temper-
ature (p = 0.005) on leaf loss were straightforward,
increasing the leaf loss rate from ~2 to ~3% d−1, the
effects on mortality were interactive (p = 0.049). At
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low temperature (21°C) without drift algae,
mortality was <0.5% growth apices d−1,
but this increased 4-fold to ~2% growth
apices d−1 when covered by drift algae at
both low and high (27°C) temperature and
at high temperature regardless of drift
algae. The presence of snails did not affect
the mortality rate (p = 0.620) or the leaf
loss rate (p = 0.774).

Drift algae caused ~50% reduction in
the production of new leaf pairs (p =
0.010), but neither temperature (p = 0.829)
nor snails (p = 0.919) had any effect on
production of new leaf pairs (Fig. 4A,B,
Table S2). In contrast, the plastochrone
interval was affected by all 3 experimental
factors (Fig. 4C,D, Table S2). Temperature
had a consistent effect across drift algae
and snail treatments (p = 0.026), with
slightly lower plastochrone interval at
27°C compared to 21°C (Fig. 4C,D). Ef -
fects of algae and snails were interactive
(p = 0.038), where snails increased the
plastochrone interval in the presence of
drift algae but had no effect when algae
were absent.

Net change in leaf length was typically
negative due to the shedding of leaves
(Fig. S1 in the supplement). The experi-
mental treatments did not have any signif-
icant effects on this rate (Table S2). How-
ever, there was a trend for snails to
negatively affect net change in leaf length
(p = 0.08), with rates being 3 times lower
in treatments with snails (−1.32 ± 0.32 mm
d−1) compared to treatments without snails
(−0.43 ± 0.15 mm d−1).

The distance between internodes was
affected by an interaction between tem-
perature and algae (p = 0.048), where drift
algae reduced the length of the 2nd
internode by almost 50% at 27°C but had
no effect at 21°C (Fig. 4E,F, Table S2). The
biomass per shoot was affected by temper-
ature and snails, but the effects differed
between different biomass components
(Fig. 5). Both elevated temperature (p =
0.039) and the presence of snails (p =
0.014) reduced the above-ground biomass
per shoots. Snails also had a negative
effect on the root biomass per shoots (p =
0.017), but rhizome biomass per shoot was
not significantly affected by any of the
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Fig. 2. In situ patterns of (A) biomass of drift algae, (B) densities of
 invasive snails Batillaria australis and (C) water temperature at 3
sites in the Swan River. Note that (C) shows different sites than
(A) and (B). Bars are mean values (±SE) (n = 10 for drift algae, n = 4
for snails) and white squares are maximum values recorded in any
one sample. The dashed lines indicate levels used in the aquarium 

experiment. nd: no data
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experimental test factors (p > 0.1). Still, there was a
trend for snails to reduce rhizome biomass per shoot
at high temperature (Fig. 5C,D).

Considering all response variables simultaneously
in a single multivariate analysis of impacts on ecolog-
ical performance, it was found that drift algae (p <
0.013) and snails (p < 0.038) were the only 2 factors to
cause significant effects (Table 1). Drift algae was the
most influential factor, contributing more than twice
as much to variation (16.1%) than any of the other
experimental factors or their interactions (8.3%).
Neither temperature nor any interactions with it
were significant, although the effect of temperature
was close to significant (p = 0.076).

Abiotic responses

Both drift algae (p < 0.0001) and snails (p = 0.014)
reduced the depth of the sulphide horizon, such that
the oxygenated zone was >4 times deeper in aquaria
without algae and snails compared to aquaria with
both algae and snails (Fig. 6). Depth to the sulphide
horizon was not significantly affected by temperature

(p = 0.373; Table S3 in the supplement), while
organic matter (p > 0.067) and chl a (p > 0.077) in the
sediment (Table S4, Fig. S2 in the supplement) were
not significantly affected by either treatment. How-
ever, in both temperature treatments, the sediments
covered by combination of algae and snails had con-
siderably more chl a than any of the other treatments
(Fig. S2). The mean content of organic matter in the
sediment was 0.43 ± 0.04% dry wt (n = 8 treatments)
and the mean chl a content was 0.26 ± 0.04 μg cm−3

(n = 8 treatments).
The oxygen concentration in the water column

depended on time of day, depth, temperature and

73

Fig. 3. Halophila ovalis. (A,B) Mortality rate and (C,D) leaf
loss rate (mean ± SE) for shoots in aquaria with or without
algae Chaetomorpha linum and snails Batillaria australis at
(A,C) 21°C and (B,D) 27°C. The factors or interactions
named in the graph are those that caused significant 

differences

Fig. 4. Halophila ovalis. (A,B) Number of newly produced
nodes, (C,D) leaf plastochrone interval and (E,F) length of
the 2nd internode (mean ± SE) for shoots in aquaria with or
without algae Chaetomorpha linum and snails Batillaria
australis at (A,C,E) 21°C and (B,D,F) 27°C. The factors or
interactions named in the graph are those that caused 

significant differences
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algae, but snails had no effect (p > 0.325; Fig. 7;
Table S5 in the supplement). Oxygen concentrations
were always lower at the bottom than at the surface
(SNKday, night: bottom < mid-water = surface), but the
difference was much greater at night than during the
day (pdepth × time = 0.015; Fig. 7). The presence of drift
algae caused lower oxygen levels at all depths
(SNKsurface, mid-water, bottom: algae < no algae), but the
effects were much greater at the bottom than at any
of the other depth strata (pdepth × algae < 0.0001; Fig. 7)
and these effects were further exaggerated at
the high experimental temperature and at night 
(ptemperature × algae × time = 0.034; Fig. 7). Oxygen levels
were always lower at 27°C compared to 21°C treat-
ments (SNKday, night, algae, no algae: 27 < 21°C), but day
and night differed only when algae were present
(SNKno algae: night = day, SNKalgae: night < day). There
was a strong negative correlation between Halophila
ovalis mortality rate and the mean oxygen concentra-
tion at the sediment surface at night (r = −0.65, p =
0.0006, n = 24), and there was a conspicuous increase
in mortality rate below 6 mg O2 l−1 (Fig. 8).

DISCUSSION

A critical step towards successfully managing and
conserving ecologically important species such as
seagrasses is understanding the effects of multiple,
concurrent anthropogenic and environmental pres-
sures. Here, we have documented that contemporary
levels of drift algae and an invasive snail, and ele-
vated temperature have significant negative effects
on survival (increased mortality) and growth of a
 seagrass species that is ubiquitous in many warm-
temperate to tropical estuaries and coastal areas
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Fig. 5. Halophila ovalis. Biomass (mean ± SE) of (A,B) leaves,
(C,D) rhizomes, and (E,F) roots for shoots in aquaria with or
without algae Chaetomorpha linum and snails Batillaria
australis at (A,C,E) 21°C and (B,D,F) 27°C. The factors or
interactions named in the graph are those that caused 

significant differences

Fig. 6. Depth (mean ± SE) to sulphide horizon in aquaria
with or without drift algae Chaetomorpha linum and snails
Batillaria australis at (A) 21°C and (B) 27°C. The factors or
interactions named in the graph are those that caused 

significant differences

Source df MS Pseudo- p Components of 
F (perm) variation (%)

Te 1 14.852 2.11 0.076 5.5
Al 1 29.656 4.21 0.013 16.1
Sn 1 18.666 2.65 0.038 8.3
Te × Al 1 7.3451 1.04 0.365 0.4
Te × Sn 1 5.4484 0.77 0.538 0
Al × Sn 1 8.6351 1.23 0.268 2.3
Te × Al × Sn 1 9.6601 1.37 0.205 7.4
Residual 16 7.0460 60.0

Table 1. PERMANOVA testing the effects of temperature
(Te), drift algae (Al) and invasive snails (Sn) on the ecologi-
cal performance of Halophila ovalis combined across all 

performance metrics. Significant values are in bold
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(Carruthers et al. 2007). Moreover, we documented
that these effects predominantly were additive rather
than synergistic or antagonistic.

In situ patterns of drift algae, invasive snails 
and temperature

Drift algae

Drift algae were ubiquitous within seagrass beds
in the Swan River, and, as in other estuaries (cf.
Kopecky & Dunton 2006), were characterised by a
clear summer peak, hinting at a seasonal pattern.
The summer peak likely reflects concurrent in -
creases in salinity, temperature and light levels
during summer months, whereas spatial patchiness
may be due to ‘random’ entanglement around leaf
structures, counteracted by hydrodynamic forces
from waves and tides (Biber 2007). Only 4 species
contributed to 90% of the total algal biomass, but
dominance by a few stress-tolerant and fast -
growing ephemeral species is common in estuaries
(Valiela et al. 1997, McGlathery 2001). The survey
also documented that the drift-algal load used in
the experiment, although high, is ecologically rele-
vant and can be found in patches in seagrass beds
in the Swan River today. We did not quantify the
stability of individual patches of drift algae, but the
effects of drift algae will depend on their residence
time in a specific location. The residence time

largely depends on the flow velocities of currents at
any given location and the roughness of the sub-
strate (Biber 2007). Using tagging experiments,
Astill & Lavery (2001) showed that drift algae can
persist for at least 3 wk at low-energy sites in the
Swan River, indicating that the duration of our
impact experiment also has  ecological relevance
(cf. Holmer & Nielsen 2007, Martinez-Lüscher &
Holmer 2010).
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Fig. 7. Oxygen concentration (mean ± SE) at different depths, during day and night, in aquaria with and without drift algae
Chaetomorpha linum at (A) 21°C and (B) 27°C. As we had no expectation that snails would affect oxygen concentration in the
water column, we pooled across snail treatments (n = 6 treatments per data point, each the average of 4 measurements). SU: 

below the surface; MI: mid-water/within the algal mat; BO: bottom at the sediment surface

Fig. 8. Halophila ovalis. Relationship between mortality rate
of shoots and oxygen concentration near the bottom at night. 

Data include all treatments (n = 24 aquaria)
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Snails

The snail survey showed that Batillaria australis
is very abundant in the Swan River, with an average
of ca. 490 snails m−2 in seagrass beds. This mean
value representing 3 sites is almost identical to what
was reported from 10 seagrass beds in 2006 (Thomsen
et al. 2010), suggesting a relatively uniform distribu-
tion of snails throughout the Swan River. High abun-
dances of B. australis have also been reported from its
native region in east Australian estuaries, with up to
2000 snails m−2 in seagrass beds near Sydney (Cum-
mins 2005), perhaps suggesting that the carrying ca-
pacity for snails in the Swan River may not yet have
been reached. High abundances of sibling species
have been reported from New Zealand (Jones &
Marsden 2005), Japan (Kamimura & Tsu chiya 2006)
and in invaded estuaries on the US west coast (Byers
2000). This large snail and its morphologically similar
sibling species are often found in high abundances in
temperate and subtropical seagrass beds, probably
due to a combination of high resistance to predators,
gastropod competitors and environmental stress. Com -
pared to in situ abundances, the density used in our
experiment was relatively low. The impacts we have
detected are therefore likely to be conservative esti-
mates, and true impacts of B. australis on seagrass
health in situ may potentially have been underesti-
mated. Yet the density in the aquaria was similar
to the density of B. australis in adjacent mudflats
(<100 snails m−2), making the results representative
for the mudflat–seagrass interface.

Temperature

There was a substantial variation in temperature
over the sampling period, as would be expected in an
estuary in a Mediterranean-type climate, with some
areas more prone to peak thermal stress than others.
Importantly, our highest experimental temperature
corresponded well with maximum summer tempera-
tures measured in situ at the bottom where the sea-
grasses are found, again supporting the ecological
relevance of our results.

Experimental effects on ecological performance

Effects of drift algae

The presence of drift algae was the stress factor that
most often caused negative effects on Halo phila

ovalis performance, potentially by indirectly increas-
ing sulphide concentrations in the sediment and hy-
poxia in the water column. Drift algae also explained
most of the total variation in the experimental data.
Several field experiments have documented negative
impacts of drift algae on seagrasses (e.g. Holmquist
1997, Nelson & Lee 2001, Cummins et al. 2004, Irlandi
et al. 2004, Huntington & Boyer 2008), most attributing
adverse effects to competition for light. However, in-
direct effects associated with dark respiration by and
decomposition of drift algae, causing hypoxia and in-
creased sulphide in the water column and sediment
pore water, can also cause rapid and severe stress on
seagrasses (Krause-Jensen et al. 1999, Holmer &
Bondgaard 2001, Holmer & Laursen 2002, Holmer et
al. 2005, Holmer & Nielsen 2007). These biogeochem-
ical processes were observed in the present study,
where the presence of drift algae raised the sulphide
horizon in the sediment and reduced oxygen levels in
the water column, ultimately resulting in a negative
relationship between water-column oxygen and sea-
grass mortality. Similar negative effects of low oxygen
levels have been reported for other seagrass species
(Greve et al. 2003, Frederiksen & Glud 2006), and sea-
grass mortality has previously been linked to low oxy-
gen levels caused by drift algae (Holmer & Nielsen
2007). Interestingly, the negative effects of drift algae
were mainly observed on production responses, but
with no detected effects on final biomass except a
near significant negative effect on leaf biomass. Major
loss of biomass has been found in die-back areas, as
the horizontal meristems soften, die back and eventu-
ally cause the loss of leaves (Carlson et al. 1994, Rask
et al. 1999). Similar softening of H. ovalis rhizomes
was found here, but the effect on shoot biomass may
have been delayed by the low water movement in the
aquaria failing to detach the leaves from the rhizomes
(Holmer & Bondgaard 2001, Mascaró et al. 2009). In
contrast, Holmer et al. (2011) found a significant influ-
ence on the biomass per shoot of all plant compart-
ments of H. ovalis. However, that experiment lasted 1
wk longer, potentially explaining the increased effect.

Effects of snails

Batillaria australis had negative effects on the bio-
mass per shoot of both leaves and roots and a non-sig-
nificant negative trend concerning rhizome biomass.
B. australis is considered a deposit-feeder (Ewers
1967a,b) that potentially can shift to filter-feeding
(Kamimura & Tsuchiya 2004, 2006). Direct grazing ef-
fects on Halophila ovalis are therefore unlikely. In-
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deed, most seagrass–gastropod studies document
positive effects on seagrasses, as snails tend to con-
sume epiphytes rather than the basiophyte (= cleaner
effect; reviewed in Hughes et al. 2004). Thus, we are
not aware of other experimental gastropod studies to
have documented non-trophic negative effects on
seagrass biomass. We hypothesise that a combination
of direct ‘uprooting’ by bulldozing snails (1 to 2 shoots
d−1) and indirect effects through deposition of organic
matter in creased sulphide stress and caused the neg-
ative effects on H. ovalis biomass. Similar negative ef-
fects associated with bioturbation at low seagrass
density have been observed for a non-native crab in
seagrass transplant experiments (Davis et al. 1998),
and recent studies of other molluscs have shown that
biodeposition from mussels (Vinther & Holmer 2008,
Vinther et al. 2008) and oysters (>150 ind. m−2; Booth
& Heck 2009) can have negative effects on seagrasses.
As indicated in the experiments by Davis et al. (1998),
it is possible that our effect was particularly strong
due to the low planting density in the aquaria, mimic-
king the seagrass–mudflat interface, and it is likely
that a denser and interconnected root– rhizome
system (e.g. in the interior of healthy seagrass beds)
may reduce the impacts of bioturbating organisms
(Frederiksen et al. 2007). Interestingly, the same 2
mechanisms (snail movement and biodeposition)
were proposed to explain positive effects of the inva-
sive sibling species B. attramentaria on the invasive
seagrass Zostera japonica (Wonham et al. 2005). How-
ever, that experiment was conducted in the interior of
a seagrass bed, using a species with larger below-
ground structures and where uprooting is less likely.
In addition, larger seagrass species can transport
more oxygen from the water column to the rhizos-
phere, potentially benefiting from snail-induced nu-
trient enrichment. In short, more studies are needed
to better understand when, where and how molluscs
affect seagrass performance. We suggest it is particu-
larly important to investigate snail movement pat-
terns, density-dependent effects (Booth & Heck 2009)
and specific feeding strategies. Small-scale patterns
of biodeposition and biogeochemistry, in con cert with
seagrass density dependent responses, e.g. the snails’
ability to transfer oxygen and to resist sulphide toxic-
ity, should also be investigated.

Effects of temperature

Negative effects of elevated temperature on Halo -
phila ovalis performance were fewer than by drift
algae and snails. The most severe effects were found

in combination with drift algae. High temperature
increased leaf loss, and, in the presence of drift algae,
also reduced the length of the 2nd internode. In -
creased mortality at temperatures near 30°C has
been also observed by Holmer et al. (2011), whereas
mortality only occurred at 37.5°C and higher for trop-
ical H. ovalis, suggesting substantially higher tem-
perature tolerance in tropical populations of this spe-
cies (Ralph 1998). Similar to Zostera marina (Greve et
al. 2003), H. ovalis may have higher respiratory oxy-
gen demand at higher temperatures, reducing the
oxygen available for plant cell activity and reducing
the capacity of the plant to oxidise the sediment and
therefore increasing the risk of sulphide intrusion
(Borum et al. 2005). Drift-algal cover may further
limit the oxygen supply, especially during the night,
when the seagrass takes up oxygen from the water
column. Only the treatment combining high temper-
ature, drift algae and snails caused high sulphide
concentrations. In contrast, other studies have shown
increased sulphide concentrations in seagrass sedi-
ments during summer and linked them to sulphide
intrusion (Frederiksen et al. 2007). Perhaps sulphide
production in our setup was limited by the low
organic content in the sediment. It is possible that
sulphide stress can be stronger, and occur at lower
temperatures, in situ where sediments have higher
organic matter content. We also note that the temper-
ature applied in the present study is similar to sum-
mer temperatures already experienced in the Swan
River. It is therefore likely that higher temperatures
in the future will reduce oxygen levels in the sea-
grass even further, and make seagrass beds more
susceptible to die-offs.

Interaction effects and conclusions

Multiple anthropogenic stressors almost always co-
occur (Breitburg et al. 1998, Crain et al. 2008, Halpern
et al. 2008) and it is therefore essential to consider
their combined effects. In the present study, relatively
few interaction effects were detected on individual re-
sponse variables, indicating that stress effects mainly
were additive. Still, we found that the internode
length (a complex growth response) decreased at
high temperature but only in the presence of drift
 algae (Significant algae × Temperature interaction),
and that the plastochrone interval (an inverse growth
response) increased by snail addition, but again only
in the presence of drift algae. Thus, for these 2 growth
responses, one stressor (drift algae) compounded the
influence of another stressor (snails or temperature).
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In a relatively similar experiment (Holmer et al. 2011),
increased temperature generally accelerated the neg-
ative effects of the coarsely branched red macroalgae
Gracilaria comosa on Halophila ovalis. Similar syner-
gistic stress effects have been observed in other facto-
rial seagrass experiments; Zostera marina was nega-
tively affected by nutrient enrichment if also stressed
by salinity (van Katwijk et al. 1999), Halodule wrightii
and Thalassia testudinum were negatively affected
by sulphide stress when combined with salinity and/
or temperature stress (Koch & Erskine 2001, Koch et
al. 2007) and T. testudinum was negatively affected
by salinity stress if co-occurring with excessive
amounts of nutrients (Kahn & Durako 2006). However,
Torquemada et al. (2005) found no synergistic effects
be tween salinity stress, temperature and pH on Halo -
phila johnsonii performance. Nevertheless, the few
seagrass studies that have included factorial-stress
combinations indicate that adverse synergistic effects
can be important and thereby provide a crucial warn-
ing that the health and status of future seagrass beds
should be interpreted in a context of co-occurring
stressors. In this context, we have here documented
that additive and synergistic effects of climate change,
eutrophication and invasive species are likely to
 negatively impact seagrass beds in the Swan River if
either of these factors is increased in the future. As in-
creasing temperatures, drift algae and invasive snails
are contemporary threats for many other estuaries,
these findings are likely to be widely applicable.
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