Stable isotopes reveal a consistent consumer–diet relationship across hundreds of kilometres

Mathew A. Vanderklift1,*, Thomas Wernberg2,3

1CSIRO Marine and Atmospheric Research, Private Bag 5, Wembley, WA 6913, Australia
2Centre for Marine Ecosystems Research, Edith Cowan University, 100 Joondalup Dve, Joondalup, WA 6027, Australia
3School of Plant Biology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia

ABSTRACT: Characterising geographical variation in trophic interactions is an important step towards understanding the consequences of changes in food webs. We characterised geographical variation across ~1000 km in stable isotope values (δ15N and δ13C) of the widely distributed sea urchin Heliocidaris erythrogramma and macroalgae that are its potential food. Variation in δ15N of H. erythrogramma and macroalgae was typically greatest among locations separated by hundreds of km, while variation in δ13C was typically greatest among reefs separated by a few km. Geographical variation in δ15N and δ13C of H. erythrogramma was well-explained by variation in δ15N and δ13C of the kelp Ecklonia radiata. The slope and intercept of regressions of stable isotope ratios of H. erythrogramma on kelp were within the range predicted if the sea urchin’s diet was exclusively kelp. These results are consistent with high reliance on a single diet across hundreds of km, revealing that H. erythrogramma likely relies predominantly on a single food source, viz. E. radiata, across southwestern Australia.

KEY WORDS: Herbivory · Kelp · Niche width · Sea urchin · Trophic interactions

INTRODUCTION

Predicting the outcomes of changes in the context of trophic interactions (e.g. new sources of nutrients or loss of key species) is a challenge to ecologists, who have yet to construct a reliable framework for predicting those consequences. Understanding geographical variation in trophic interactions is critical for generating insights into those consequences. However, ecologists still lack understanding of patterns and causes of geographical variations in the influence of consumers on their prey (interaction strength: e.g. Menge et al. 2004, Pennings & Silliman 2005), and in the diets of consumers (e.g. Cabana & Rasmussen 1996, Roth et al. 2007).

Geographical variation in diet occurs across a variety of gradients. For example, latitudinal gradients in trophic niche width (i.e. the diversity of prey consumed) may exist, although the direction and underlying mechanisms remain poorly understood (e.g. Clavero et al. 2003, Vázquez & Stevens 2004). At smaller scales, diet can change among habitats or along environmental gradients (e.g. Paetzold et al. 2008, Waddington et al. 2008). Determining the spatial scales across which diets vary will be important for understanding the situations in which food webs vary, or remain consistent, across space.

Stable isotope analysis is a tool that can be used to resolve questions about geographical patterns in food webs. One way of using stable isotopes to investigate geographical variation in food webs is to use mixing models to reconstruct diets and determine trophic pathways at different places (Phillips & Gregg 2001, Jackson et al. 2009; see example in Dang et al. 2009). However, even a modest number of potential diets (a situation typical in field studies), can lead to ambiguous conclusions if diets do not have distinct stable isotope ratios. This issue is not resolved by repeating mixing models for different places, as each will give a range of possible solutions with associated uncertainty.
However, ecologists can also take advantage of geographical variation, for example by matching spatial patterns in consumers with those of potential diets (e.g. Melville & Connolly 2003). For example, if spatial patterns in δ13C of a consumer are highly correlated with δ13C of only one potential diet, that would be evidence consistent with reliance on that diet. If spatial patterns in δ15N of a consumer and diet are also correlated, this would be an indication of consistent trophic level, and would be further evidence consistent with this conclusion. However, this approach has a potential pitfall, as it relies on patterns of association that could potentially occur due to spatial autocorrelation (e.g. if spatial patterns in consumers with those of potential geographical variation, for example by matching spatial patterns in consumers and putative diet are each determined by an additional unmeasured influence, such as a gradient in δ13C caused by a nitrogen source that influences all primary producers).

One way to identify when spatial autocorrelation might be present is partial regression analysis (Borcard et al. 1992, Legendre 1993). This approach allows identification of spurious correlations by partitioning variation that can be attributed to spatial structure from those due to other factors (see detailed discussion in Legendre & Legendre 1998), and is often used as a way to identify likely environmental influences on geographical variations in abundance.

An additional test of the plausibility of the consumer-diet relationship using stable isotope ratios would be to test 2 predictions about the nature of the regression of consumer ratios on diet ratios. First, if a consumer relies on a single diet, the slope of the regression should be 1. Second, because the stable isotope ratios of a consumer’s tissues usually differ from those of its diet in a relatively predictable way, the intercept of the regression should be equivalent to the difference expected if the consumer was relying on that diet (i.e. the consumer-diet discrimination).

Our aims were to characterise geographical variation in stable isotope ratios of a consumer (the purple sea urchin Heliocidaris erythrogramma) and its potential diets (macroalgae), to explore how geographical variation might influence the outcomes of mixing models, and to evaluate the utility of partial regression analysis, coupled with tests of predictions about regressions, to identify likely diets. Understanding geographical variation in the diet of H. erythrogramma is useful because its diet has profound implications for the influence it exerts on rocky reef ecosystems. H. erythrogramma exerts an especially strong influence on rocky reefs in some areas of eastern Australia, where it can denude kelp-dominated ecosystems (Valentine & Johnson 2005, Wright et al. 2005), but in southern and western Australia, it generally exerts a minor influence (Connell & Irving 2008).

MATERIALS AND METHODS

Study area. Our study took place at 4 locations on the western coast of Australia, encompassing a geographical extent of ~1000 km: Hamelin Bay (34°S), Marmion Lagoon (32°S), Jurien Bay (30°S) and Kalbarri (28°S). The nearshore environment along this coast is characterised by rocky reefs that host diverse assemblages of macroalgae. The small kelp *Ecklonia radiata* typically dominates the biomass of macroalgae on these reefs, but species richness is generally very high (>10–20 species 0.25 m−2), and several species of fucalean algae (e.g. Scytotalia doryocarpa, Sargassum spp.) also attain high biomass in small patches (see Wernberg et al. 2003 and Smale et al. 2010 for details on assemblage structure). We collected 1 species of sea urchin (*Heliocidaris erythrogramma*, n = 3) and 3 species of algae (*E. radiata, Ulva lactuca* and Rhodymenia sonderi, n = 3 of each) at each of 3 reefs separated by >1 km within each of the 4 locations (hereafter we use genus names only for simplicity). *Ecklonia* (kelp) and *Rhodymenia* (foliose red alga) were included because they are likely to contribute to the diet of *Heliocidaris* on the west coast of Australia (Vanderklift et al. 2006); *Ulva* (green alga) is likely to be a minor contributor to diet, but is present in small quantities in gut contents. At all reefs, *Rhodymenia* and *Ulva* were collected from open patches interspersed among the *Ecklonia* canopy. Only *Ecklonia* was found at Kalbarri. The study was done in the austral summer between December 2005 and January 2006.

Stable isotope analyses. Sea urchins and algae were collected by hand, kept on ice for up to 6 h, and then frozen. In the laboratory, sea urchins and algae were thawed and tissue prepared for stable isotope analysis. For algae, sections of clean (i.e. without epibionts) tissue were removed from the thallus (entire thallus for *Ulva* and *Rhodymenia*, laterals for *Ecklonia*). For sea urchins, muscle tissue was dissected from the Aristotle’s lantern. Tissue samples were rinsed with deionised water and dried in an oven at 60°C. After drying, samples were ground using a ball mill and then stored in microcentrifuge tubes. δ15N and δ13C were measured by continuous-flow isotope ratio mass spectrometry using a Europa Scientific ANCA-NT 20–20 isotope ratio mass spectrometer. The analytical precision derived from repeated measurements of internal standards (which had been previously calibrated against International Atomic Energy Agency or National Institute of Standards and Technology standards) was maximum ±0.12 (SD) for δ15N and ±0.10 for δ13C.

Statistical analyses. Geographical patterns in δ15N and δ13C of algae and invertebrates were analysed using nested analysis of variance, with the factors Location (n = 4 for *Ecklonia*, n = 3 for other taxa) and
We conducted separate analyses for each of the reefs where at least 3 individual *Heliocidaris* were collected. Stable isotope ratios of the macroalgae were adjusted to account for consumer-diet discrimination using average values for marine invertebrates taken from Caut et al. (2009, for δ¹³C) and Vanderklift & Ponsard (2003, for δ¹⁵N).

RESULTS

Patterns of spatial variation

For each of the macroalgae, δ¹⁵N varied significantly among locations (p < 0.05, Table 1, Fig. 1), and this was the dominant source of variation (accounting for >57% of variance in each case). In each case, Student-Newman-Keuls (SNK) tests revealed that δ¹⁵N of macroalgae collected from Marmion Lagoon was significantly higher than that from all other sites (Fig. 1). In contrast, differences among reefs were not significant (p > 0.09 in each case), and contributed little to variation (<13% in each case). δ¹⁵N of *Heliocidaris* mirrored these trends, with differences among locations being large (>42% of total variance) and significant (p < 0.05); the highest δ¹⁵N were yielded by individuals collected from Marmion Lagoon (Fig. 1).

In contrast, patterns of spatial variation in δ¹³C of the algae were less consistent (Table 2, Fig. 1). Variation in δ¹³C of *Ecklonia* and *Ulva* among locations was virtually non-existent (leading to negative variance compo-

Table 1. Results of analyses of variance of δ¹⁵N for 3 species of macroalgae (Ecklonia radiata, Rhodymenia sonderi and Ulva lactuca) and the sea urchin *Heliocidaris erythrogramma*, testing for differences among locations and reefs. ω²: magnitude of effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Variance component</th>
<th>ω²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecklonia radiata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>3</td>
<td>4.05</td>
<td>24.03</td>
<td><0.001</td>
<td>0.432</td>
<td>76.5</td>
</tr>
<tr>
<td>Reef (Location)</td>
<td>8</td>
<td>0.17</td>
<td>1.47</td>
<td>0.219</td>
<td>0.018</td>
<td>3.2</td>
</tr>
<tr>
<td>Residual</td>
<td>24</td>
<td>0.11</td>
<td></td>
<td></td>
<td>0.115</td>
<td>20.3</td>
</tr>
<tr>
<td>Rhodymenia sonderi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>2</td>
<td>2.14</td>
<td>8.51</td>
<td>0.018</td>
<td>0.218</td>
<td>57.5</td>
</tr>
<tr>
<td>Reef (Location)</td>
<td>6</td>
<td>0.25</td>
<td>2.18</td>
<td>0.096</td>
<td>0.047</td>
<td>12.4</td>
</tr>
<tr>
<td>Residual</td>
<td>17*</td>
<td>0.11</td>
<td></td>
<td></td>
<td>0.114</td>
<td>30.1</td>
</tr>
<tr>
<td>Ulva lactuca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>2</td>
<td>3.94</td>
<td>51.68</td>
<td><0.001</td>
<td>0.430</td>
<td>89.2</td>
</tr>
<tr>
<td>Reef (Location)</td>
<td>6</td>
<td>0.08</td>
<td>1.91</td>
<td>0.135</td>
<td>0.012</td>
<td>2.5</td>
</tr>
<tr>
<td>Residual</td>
<td>18</td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.040</td>
<td>8.3</td>
</tr>
<tr>
<td>Heliocidaris erythrogramma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>2</td>
<td>4.55</td>
<td>5.54</td>
<td>0.043</td>
<td>0.414</td>
<td>42.8</td>
</tr>
<tr>
<td>Reef (Location)</td>
<td>6</td>
<td>0.82</td>
<td>1.95</td>
<td>0.127</td>
<td>0.133</td>
<td>13.7</td>
</tr>
<tr>
<td>Residual</td>
<td>18</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0.421</td>
<td>43.5</td>
</tr>
</tbody>
</table>

*df reduced to account for missing replicate
nents), while variation among reefs was large (>37%) and significant (p < 0.02 in each case). However, variation in δ13C of Rhodymenia among locations was large (41.9% of variance) and significant (p < 0.03) while variation among reefs was minor (1.1%). Variation among locations in δ13C of Heliocidaris was also small (leading to negative variance components) and not significant, but variation among reefs was large and significant (63.9%, p < 0.001).

Estimates of contribution to diet using mixing models

The 1st to 99th percentile range of feasible contributions to the diet of Heliocidaris was large for each of the potential diets, indicating considerable uncertainty (Table 3). The highest feasible contributions at all sites were from Ecklonia (82 to 85%) or Ulva (78 to 88%), while Rhodymenia sonderi always yielded the lowest feasible contributions. For both Ecklonia and Ulva, the lower limit of feasible contributions was quite low (3 to 8% for Ecklonia and 2 to 7% for Ulva).

Partitioning variation in stable isotope data with partial regression

Patterns in δ15N of Ecklonia alone more parsimoniously matched the patterns in δ15N of Heliocidaris than any model including Ulva or Rhodymenia. δ15N of Heliocidaris was strongly positively correlated with that of Ecklonia ($r^2 = 0.67$), and also strongly correlated with the spatial model based on geographical coordinates ($r^2_{adj} = 0.65$). Variation partitioning indicated that

Fig. 1. δ15N and δ13C of 3 species of macroalgae (Ecklonia radiata, Rhodymenia sonderi, Ulva lactuca) and 1 consumer (the sea urchin Heliocidaris erythrogramma) at 3 reefs at each of 4 locations in western Australia (mean ± SE, n = 3)
most of the variation in δ^{15}N of *Heliocidaris* (54%; Fig. 2a) was jointly accounted for by variation in δ^{15}N of *Ecklonia* and spatial pattern, likely due to spatially-structured variation in δ^{15}N of *Ecklonia*, that is, patterns in δ^{15}N of *Ecklonia* that varied in a way explained by the spatial model (see Borcard et al. 1992). Relatively little (9%) was accounted for by variation in δ^{15}N of *Ecklonia* that was not spatially structured. A small amount of variation was accounted for by spatial structure different from that exhibited by *Ecklonia* (12%), indicating that spatial variation due to factors other than those explained by *Ecklonia* were an additional small influence.

An additional test of whether consumption of *Ecklonia* can account for patterns in δ^{15}N of *Heliocidaris* is whether the intercept and slope of the regression match the values predicted if *Ecklonia* was the main diet source. The intercept for the regression of δ^{15}N of *Heliocidaris* on δ^{15}N of *Ecklonia* (Fig. 3a) was 2.18 (± 3.05, 95% CI), a result very close to the mean (2.0%) for ammonotelic organisms reported by Vanderklift & Ponsard (2003; Fig. 3a) and to that yielded in controlled laboratory experiments (2.2%, Gates 2006). However, there was considerable uncertainty (confidence intervals were very large) around the estimate. The slope of the regression was 0.89 (± 0.56, 95% CI), which was not significantly different from the predicted value of 1 (p > 0.66). Both results are consistent with the values predicted if *Ecklonia* was the main food source for *Heliocidaris*.

The combination of *Ecklonia* and *Ulva* most parsimoniously matched the patterns in δ^{13}C of *Heliocidaris*. δ^{13}C of each alga was positively correlated with that of *Heliocidaris*, both separately (*Ecklonia*, r^2 = 0.54; *Ulva*, r^2 = 0.79) and together (r^2 adj = 0.85). Unlike δ^{15}N, no variation in δ^{13}C of *Heliocidaris* was accounted for by spatial structure, either uniquely or shared with δ^{13}C of algae (Fig. 2b; negative variation is due to the presence of strong correlations between the algae and the spatial model, see Legendre & Legendre 1998). A large proportion of variation was accounted for by non-spatial patterns in δ^{13}C of the algae (Fig. 2b).

This result is consistent with reliance by *Heliocidaris* on both algae, but does not enable determination of whether 1 alga is consumed more. We therefore tested predictions about the expected slope and intercept of the regressions in an attempt to do so. The regression of δ^{13}C of *Heliocidaris* on δ^{13}C of *Ecklonia* in our data yielded an intercept of −3.98 (± 13.61, 95% CI); the high variability around the estimate was heavily influenced by 1 reef at Jurien Bay (Cook’s distance >1; Fig. 3b). All other reefs yielded δ^{13}C within 0.8‰ of the expected value. The estimate of the intercept without this site was 3.32 (± 5.21, 95% CI). Mean δ^{13}C discrimination of ammonotelic organisms in a recent review by Caut et al. (2009) was 0.48 but varied from −3.4 to 5.5. Regression of δ^{13}C of *Heliocidaris* on δ^{13}C of *Ecklonia* yielded a slope of 0.78 (± 0.64, 95% CI); a slope of 1.1 (± 0.24, 95% CI) was obtained with the outlier excluded. The regression of *Heliocidaris* on *Ulva* (Fig. 3c) yielded a slope of 0.79 (± 0.37, 95% CI) and an intercept of −5.01 (± 7.22, 95% CI), with most reefs yielding values >1‰ lower than the predicted value.
DISCUSSION

Spatial variation in δ^{15}N among locations (hundreds of km apart) was large and statistically significant for all taxa, while variation in δ^{13}C among reefs (few km apart) was large and statistically significant for 3 of 4 taxa. δ^{15}N and δ^{13}C of Heliocidaris muscle exhibited spatial patterns that closely matched those of Ecklonia, and the intercepts of the regressions were within the range predicted by laboratory studies.

Spatial variation in δ^{15}N and δ^{13}C

Spatial variation in δ^{15}N and δ^{13}C allows some insights into the processes supporting the production of algal biomass, and thus ultimately the food webs of the rocky reefs. δ^{15}N of all algae showed significant variance among locations separated by hundreds of km, largely due to elevated δ^{15}N in algae collected from Marmion Lagoon. Marmion Lagoon is situated adjacent to the northern suburbs of Perth, a city with a pop-
ulation of ~1.5 million, and the only large city on the west coast of Australia. The elevated δ¹⁵N in Marmion Lagoon is thus likely a result of anthropogenic sources of nutrients. Gartner et al. (2002) found that a waste-water outfall ~5 km north of our study area was a probable source of elevated δ¹⁵N for up to 2 km, and near the outfall recorded δ¹⁵N approximately twice as high as the values we recorded. Our results suggest that the influence of anthropogenic sources of nutrients is reflected in algae throughout Marmion Lagoon. δ¹⁵N of algae showed little variation among reefs separated by hundreds of metres, suggesting that at this spatial scale the sources of nitrogen are broadly consistent.

In contrast, spatial patterns in δ¹³C of algae suggested that local (among reefs, distances of 1 to a few km) influences were important for Ecklonia and Ulva, but large-scale influences (among locations, distances of hundreds of km) were important for Rhodymenia. Local variation in δ¹³C is expected when environmental influences such as light availability and water motion influence rates of photosynthesis, but it is unclear how different primary producers will respond to this variation. The observation that the different algae did not show spatially consistent patterns suggests that differences among species in use of various sources of organic and inorganic carbon, and/or physiological mechanisms for carbon capture and storage (Raven et al. 2002), are an important influence on spatial patterns. If this is general among primary producers it could help resolve trophic interactions in cases where stable isotope ratios are similar, and differentiation among food sources is ambiguous.

Using spatial patterns to infer diet

Mixing models (siar) performed for each site yielded maximum contributions ranging from 82 to 85% for Ecklonia and 78 to 88% for Ulva. The wide range of feasible contributions and the overlapping estimates illustrate that uncertainty in interpreting results from a single place is not necessarily alleviated by repeating analyses for other places (see also Melville & Connolly 2003). Combining partial regression analyses with tests of predictions about the regressions provided a powerful way of identifying the reliance of Heliocidaris on a single diet that was not possible using mixing models. By using the information contained in the spatial variation, the partial regression approach helped identify that Ecklonia is likely to be the main component of the diet of Heliocidaris over hundreds of km. Several lines of evidence from the regression analyses point to extensive reliance by Heliocidaris on Ecklonia. First, only Ecklonia was included in the most parsimonious model explaining variation in δ¹⁵N. Second, although both Ecklonia and Ulva were included in the most parsimonious model explaining variation in δ¹³C, Ecklonia provided a much better fit to the δ¹⁵C of Heliocidaris.

The methods are extensible to multivariate situations (Borcard et al. 1992), and so could readily accommodate multiple elements. Mixing models remain a key tool for interpreting stable isotope data, but analysis of spatial patterns could be used to inform these models to reduce uncertainty.

Reliance on kelp Ecklonia radiata

The apparently widespread reliance of Heliocidaris on a single diet is inconsistent with the view that sea urchins are generalist consumers that eat a wide range of prey (Lawrence 1975, Andrew 1989). This view has perhaps been shaped largely by the flexible diets of some of the more commonly studied taxa, such as species within the families Strongylocentrotidae and Diadematidae. Indeed, the flexible diet of sea urchins within these families often leads to strong effects on their ecosystems as they can consume all erect algae over vast areas (e.g. Mann 1982). However, studies of food choice by sea urchins often indicate that they strongly select certain food under laboratory conditions, but that those choices are not reflected in the wild (Schiel 1982). This observation likely reflects a trade-off between maximising consumption of food that best enhances growth and reproduction, and reducing the risk of mortality and the energetic costs of searching (Schoener 1971).

Our conclusions are based on surveys of 3 potential algae diets. Numerous other species of algae are present on the reefs we surveyed, and we cannot rule out the possibility that some of them might also contribute to the diet of Heliocidaris. However, our choices were guided by prior knowledge of the types of algae that typically dominate the gut contents of Heliocidaris (Vanderklift et al. 2006), so the conclusions are probably quite robust. The apparently narrow diet of Heliocidaris across the hundreds of km our study encompassed can be reconciled by the observation that in western Australia it tends to feed on drift algae (Vanderklift & Kendrick 2005, Vanderklift & Wernberg 2008), and drift algae are dominated by Ecklonia, even where it is not the dominant alga on the reef (Wernberg et al. 2006). Further, even where a variety of drift algae and seagrasses are available, Heliocidaris selectively retains Ecklonia over other species (Vanderklift & Kendrick 2005, Vanderklift & Wernberg 2008). The passive ‘drift-feeding’ behaviour of Heliocidaris is not unusual among sea urchins, and might be an optimal mode of foraging in an environment where the threat of being eaten by predators or dislodged by waves is
significant. Although *Heliocidaris* that inhabit inshore reefs are able to consume drift *Ecklonia* originating offshore (Vanderklift & Wernberg 2008), our surveys during this study were conducted on offshore reefs, where *Heliocidaris* must rely more on locally-generated drift.

Narrow trophic niche occupied by a ‘generalist’ herbivore

Heliocidaris on the eastern coast of Australia apparently exhibits a wider range of feeding behaviour, with evidence that it feeds on drift algae and that it adopts a mobile grazing behaviour (Valentine & Johnson 2005, Wright et al. 2005). This latter behaviour is associated with extensive defoliation of kelp forests. The narrow diet we observed in western Australia might therefore reflect a ‘realised niche’ within a broader ‘fundamental niche’. Other species of sea urchins elsewhere are able to switch between drift-feeding and grazing behaviours depending on the availability of drift algae (Harrold & Reed 1985).

By taking a geographic perspective, we have shown that a consumer, the sea urchin *Heliocidaris erythrogramma*, likely relies on a consistent food source across hundreds of km of its distribution on the west coast of Australia. The finding that *Heliocidaris* relies extensively on *Ecklonia* adds to growing evidence of the disproportionate importance of *Ecklonia* in supporting food webs (Vanderklift & Wernberg 2008, Crawley et al. 2009). The distribution and abundance of kelp elsewhere in Australia has been reduced by multiple impacts, including low water quality, invasive species and overgrazing by herbivores (Connell et al. 2008, Ling 2008). The broad trophic importance of kelp on the west coast of Australia and its apparent sensitivity to impacts imply that it will be important for conservation efforts to focus on minimising threats to kelp.

Acknowledgements. This research was partially supported by an ARC Discovery grant (DP0555929) to T.W. The manuscript was improved by thoughtful comments from P. Frouin, R. Inger and P. Lavery. The research described in this paper complies with the laws of Australia.

LITERATURE CITED

Waddington KI, Bellchambers LM, Vanderklift MA, Walker DI (2008) Western rock lobsters (*Panulirus cygnus*) in Western Australian deep coastal ecosystems (35–60 m) are more carnivorous than those in shallow coastal ecosystems. Estuar Coast Shelf Sci 79:114–120

Editorial responsibility: Otto Kinne, Oldendorf/Luhe, Germany

Submitted: June 29, 2009; Accepted: January 8, 2010

Proofs received from author(s): March 4, 2010